The Resource Euler systems, by Karl Rubin
Euler systems, by Karl Rubin
Resource Information
The item Euler systems, by Karl Rubin represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of San Diego Libraries.This item is available to borrow from 1 library branch.
Resource Information
The item Euler systems, by Karl Rubin represents a specific, individual, material embodiment of a distinct intellectual or artistic creation found in University of San Diego Libraries.
This item is available to borrow from 1 library branch.
- Summary
- One of the most exciting new subjects in Algebraic Number Theory and Arithmetic Algebraic Geometry is the theory of Euler systems. Euler systems are special collections of cohomology classes attached to p-adic Galois representations. Introduced by Victor Kolyvagin in the late 1980s in order to bound Selmer groups attached to p-adic representations, Euler systems have since been used to solve several key problems. These include certain cases of the Birch and Swinnerton-Dyer Conjecture and the Main Conjecture of Iwasawa Theory. Because Selmer groups play a central role in Arithmetic Algebraic
- Language
- eng
- Extent
- 1 online resource (241 pages)
- Contents
-
- Chapter 4. Derived Cohomology Classes
- Chapter 5. Bounding the Selmer Group
- Chapter 6. Twisting
- Chapter 7. Iwasawa Theory
- Chapter 8. Euler Systems and p-adic L-functions
- Chapter 9. Variants
- Appendix A. Linear Algebra
- Appendix B. Continuous Cohomology and Inverse Limits
- Appendix C. Cohomology of p-adic Analytic Groups
- Appendix D. p-adic Calculations in Cyclotomic Fields
- Frontmatter
- Bibliography
- Index of Symbols
- Subject Index
- Contents
- Acknowledgments
- Rubin, Karl
- Introduction
- Chapter 1. Galois Cohomology of p-adic Representations
- Chapter 2. Euler Systems: Definition and Main Results
- Chapter 3. Examples and Applications
- Isbn
- 9780691050768
- Label
- Euler systems
- Title
- Euler systems
- Statement of responsibility
- by Karl Rubin
- Language
- eng
- Summary
- One of the most exciting new subjects in Algebraic Number Theory and Arithmetic Algebraic Geometry is the theory of Euler systems. Euler systems are special collections of cohomology classes attached to p-adic Galois representations. Introduced by Victor Kolyvagin in the late 1980s in order to bound Selmer groups attached to p-adic representations, Euler systems have since been used to solve several key problems. These include certain cases of the Birch and Swinnerton-Dyer Conjecture and the Main Conjecture of Iwasawa Theory. Because Selmer groups play a central role in Arithmetic Algebraic
- Cataloging source
- E7B
- http://library.link/vocab/creatorName
- Rubin, Karl
- Index
- index present
- Language note
- In English
- Literary form
- non fiction
- Nature of contents
-
- dictionaries
- bibliography
- Series statement
- Annals of Mathematics Studies
- Series volume
- Number 147
- http://library.link/vocab/subjectName
-
- Algebraic number theory
- p-adic numbers
- MATHEMATICS
- MATHEMATICS
- Algebraic number theory
- p-adic numbers
- Algebraic number theory
- MATHEMATICS
- Mathematics
- Numerical and Computational Mathematics
- p-adic numbers
- Mathematik
- Label
- Euler systems, by Karl Rubin
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Chapter 4. Derived Cohomology Classes
- Chapter 5. Bounding the Selmer Group
- Chapter 6. Twisting
- Chapter 7. Iwasawa Theory
- Chapter 8. Euler Systems and p-adic L-functions
- Chapter 9. Variants
- Appendix A. Linear Algebra
- Appendix B. Continuous Cohomology and Inverse Limits
- Appendix C. Cohomology of p-adic Analytic Groups
- Appendix D. p-adic Calculations in Cyclotomic Fields
- Frontmatter
- Bibliography
- Index of Symbols
- Subject Index
- Contents
- Acknowledgments
- Rubin, Karl
- Introduction
- Chapter 1. Galois Cohomology of p-adic Representations
- Chapter 2. Euler Systems: Definition and Main Results
- Chapter 3. Examples and Applications
- Control code
- ocn891400001
- Dimensions
- unknown
- Extent
- 1 online resource (241 pages)
- Form of item
- online
- Isbn
- 9780691050768
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Note
- JSTOR
- Other control number
- 10.1515/9781400865208
- http://library.link/vocab/ext/overdrive/overdriveId
- 22573/ctt767xdd
- Specific material designation
- remote
- System control number
- (OCoLC)891400001
- Label
- Euler systems, by Karl Rubin
- Bibliography note
- Includes bibliographical references and index
- Carrier category
- online resource
- Carrier category code
-
- cr
- Carrier MARC source
- rdacarrier
- Color
- multicolored
- Content category
- text
- Content type code
-
- txt
- Content type MARC source
- rdacontent
- Contents
-
- Chapter 4. Derived Cohomology Classes
- Chapter 5. Bounding the Selmer Group
- Chapter 6. Twisting
- Chapter 7. Iwasawa Theory
- Chapter 8. Euler Systems and p-adic L-functions
- Chapter 9. Variants
- Appendix A. Linear Algebra
- Appendix B. Continuous Cohomology and Inverse Limits
- Appendix C. Cohomology of p-adic Analytic Groups
- Appendix D. p-adic Calculations in Cyclotomic Fields
- Frontmatter
- Bibliography
- Index of Symbols
- Subject Index
- Contents
- Acknowledgments
- Rubin, Karl
- Introduction
- Chapter 1. Galois Cohomology of p-adic Representations
- Chapter 2. Euler Systems: Definition and Main Results
- Chapter 3. Examples and Applications
- Control code
- ocn891400001
- Dimensions
- unknown
- Extent
- 1 online resource (241 pages)
- Form of item
- online
- Isbn
- 9780691050768
- Media category
- computer
- Media MARC source
- rdamedia
- Media type code
-
- c
- Note
- JSTOR
- Other control number
- 10.1515/9781400865208
- http://library.link/vocab/ext/overdrive/overdriveId
- 22573/ctt767xdd
- Specific material designation
- remote
- System control number
- (OCoLC)891400001
Subject
- Electronic book
- Electronic books
- MATHEMATICS -- Algebra | Intermediate
- MATHEMATICS -- Algebra | Intermediate
- MATHEMATICS -- Number Theory
- Mathematics
- Mathematik
- Numerical and Computational Mathematics
- p-adic numbers
- p-adic numbers
- Algebraic number theory
- Algebraic number theory
Genre
Member of
Library Links
Embed
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.sandiego.edu/portal/Euler-systems-by-Karl-Rubin/yAxm5t1icig/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.sandiego.edu/portal/Euler-systems-by-Karl-Rubin/yAxm5t1icig/">Euler systems, by Karl Rubin</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.sandiego.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.sandiego.edu/">University of San Diego Libraries</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item Euler systems, by Karl Rubin
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.sandiego.edu/portal/Euler-systems-by-Karl-Rubin/yAxm5t1icig/" typeof="Book http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.sandiego.edu/portal/Euler-systems-by-Karl-Rubin/yAxm5t1icig/">Euler systems, by Karl Rubin</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.sandiego.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.sandiego.edu/">University of San Diego Libraries</a></span></span></span></span></div>