Coverart for item
The Resource Plant physics, Karl J. Niklas and Hanns-Christof Spatz

Plant physics, Karl J. Niklas and Hanns-Christof Spatz

Label
Plant physics
Title
Plant physics
Statement of responsibility
Karl J. Niklas and Hanns-Christof Spatz
Creator
Contributor
Subject
Language
eng
Cataloging source
ICU/DLC
http://library.link/vocab/creatorName
Niklas, Karl J
Illustrations
illustrations
Index
index present
LC call number
QK711.2
LC item number
.N54 2012
Literary form
non fiction
Nature of contents
bibliography
http://library.link/vocab/relatedWorkOrContributorName
Spatz, Hanns-Christof
http://library.link/vocab/subjectName
  • Plant physiology
  • Botanical chemistry
Label
Plant physics, Karl J. Niklas and Hanns-Christof Spatz
Instantiates
Publication
Bibliography note
Includes bibliographical references and indexes
Contents
ch. 1 An Introduction to Some Basic Concepts -- 1.1.What is plant physics? -- 1.2.The importance of plants -- Box 1.1 The amount of organic carbon produced annually -- 1.3.A brief history of plant life -- 1.4.A brief review of vascular plant ontogeny -- 1.5.Plant reproduction -- 1.6.Compromise and adaptive evolution -- Box 1.2 Photosynthetic efficiency versus mechanical stability -- 1.7.Elucidating function from form -- 1.8.The basic plant body plans -- 1.9.The importance of multicellularity -- ch. 2 Environmental Biophysics -- 2.1.Three transport laws -- 2.2.Boundary layers -- 2.3.Living in water versus air -- Box 2.1 Passive diffusion of carbon dioxide in the boundary layer in air and in water -- 2.4.Light interception and photosynthesis -- Box 2.2 Absorption of light by chloroplasts -- Box 2.3 Formulas for the effective light absorption cross section of some geometric objects -- Box 2.4 Modeling light interception in canopies -- 2.5.Phototropism -- 2.6.Mechanoperception -- 2.7.Thigmomorphogenesis -- 2.8.Gravitropism -- 2.9.Root growth, root anchorage, and soil properties -- ch. 3 Plant Water Relations -- 3.1.The roles of water acquisition and conservation -- 3.2.Some physical properties of water -- 3.3.Vapor pressure and Raoult's law -- 3.4.Chemical potential and osmotic pressure -- 3.5.Water potential -- 3.6.Turgor pressure and the volumetric elastic modulus -- 3.7.Flow through tubes and the Hagen-Poiseuille equation -- 3.8.The cohesion-tension theory and the ascent of water -- 3.9.Phloem and phloem loading -- ch. 4 The Mechanical Behavior of Materials -- 4.1.Types of forces and their components -- 4.2.Strains -- 4.3.Different responses to applied forces -- 4.4.A note of caution about normal stresses and strains -- 4.5.Extension to three dimensions -- 4.6.Poisson's ratios -- Box 4.1 Poisson's ratio for an incompressible fluid -- Box 4.2 Poisson's ratio for a cell -- 4.7.Isotropic and anisotropic materials -- 4.8.Shear stresses and strains -- 4.9.Interrelation between normal stresses and shear stresses -- 4.10.Nonlinear elastic behavior -- 4.11.Viscoelastic materials -- 4.12.Plastic deformation -- 4.13.Strength -- 4.14.Fracture mechanics -- 4.15.Toughness, work of fracture, and fracture toughness -- 4.16.Composite materials and structures -- 4.17.The Cook-Gordon mechanism -- ch. 5 The Effects of Geometry, Shape, and Size -- 5.1.Geometry and shape are not the same things -- 5.2.Pure bending -- 5.3.The second moment of area -- 5.4.Simple bending -- Box 5.1 Bending of slender cantilevers -- Box 5.2 Three-point bending of slender beams -- 5.5.Bending and shearing -- Box 5.3 Bending and shearing of a cantilever -- Box 5.4 Bending and shearing of a simply supported beam -- Box 5.5 The influence of the microfibrillar angle on the stiffness of a cell -- 5.6.Fracture in bending -- 5.7.Torsion -- 5.8.Static loads -- Box 5.6 Comparison of forces on a tree trunk resulting from self-loading with those experienced in bending -- 5.9.The constant stress hypothesis -- Box 5.7 Predictions for the geometry of a tree trunk obeying the constant stress hypothesis -- 5.10.Euler buckling -- 5.11.Hollow stems and Brazier buckling -- 5.12.Dynamics, oscillation, and oscillation bending -- Box 5.8 Derivation of eigenfrequencies -- ch. 6 Fluid Mechanics -- 6.1.What are fluids? -- Box 6.1 The Navier-Stokes equations -- 6.2.The Reynolds number -- 6.3.Flow and drag at small Reynolds numbers -- Box 6.2 Derivation of the Hagen-Poiseuille equation -- 6.4.Flow of ideal fluids -- 6.5.Boundary layers and flow of real fluids -- Box 6.3 Vorticity -- 6.6.Turbulent flow -- Box 6.4 Turbulent stresses and friction velocities -- 6.7.Drag in real fluids -- 6.8.Drag and flexibility -- 6.9.Vertical velocity profiles -- 6.10.Terminal settling velocity -- 6.11.Fluid dispersal of reproductive structures -- ch. 7 Plant Electrophysiology -- 7.1.The principle of electroneutrality -- 7.2.The Nernst-Planck equation -- 7.3.Membrane potentials -- Box 7.1 The Goldman equation -- 7.4.Ion channels and ion pumps -- Box 7.2 The Ussing-Teorell equation -- 7.5.Electrical currents and gravisensitivity -- 7.6.Action potentials -- 7.7.Electrical signaling in plants -- ch. 8 A Synthesis: The Properties of Selected Plant Materials, Cells, and Tissues -- 8.1.The plant cuticle -- 8.2.A brief introduction to the primary cell wall -- Box 8.1 Cell wall stress and expansion resulting from turgor -- 8.3.The plasmalemma and cell wall deposition -- 8.4.The epidermis and the tissue tension hypothesis -- 8.5.Hydrostatic tissues -- Box 8.2 Stresses in thick-walled cylinders -- Box 8.3 Compression of spherical turgid cells -- 8.6.Nonhydrostatic cells and tissues -- 8.7.Cellular solids -- 8.8.Tissue stresses and growth stresses -- 8.9.Secondary growth and reaction wood -- 8.10.Wood as an engineering material -- ch. 9 Experimental Tools -- 9.1.Anatomical methods on a microscale -- 9.2.Mechanical measuring techniques on a macroscale -- Box 9.1 An example of applied biomechanics: Tree risk assessment -- 9.3.Mechanical measuring techniques on a microscale -- 9.4.Scholander pressure chamber -- 9.5.Pressure probe -- 9.6.Recording of electric potentials and electrical currents -- 9.7.Patch clamp techniques -- 9.8.Biomimetics -- ch. 10 Theoretical Tools -- 10.1.Modeling -- 10.2.Morphology: The problematic nature of structure-function relationships -- 10.3.Theoretical morphology, optimization, and adaptation -- 10.4.Size, proportion, and allometry -- Box 10.1 Comparison of regression parameters -- 10.5.Finite element methods (FEM) -- 10.6.Optimization techniques -- Box 10.2 Optimal allocation of biological resources -- Box 10.3 Lagrange multipliers and Murray's law
Control code
730906535
Dimensions
24 cm
Extent
xx, 426 p.
Isbn
9780226586328
Isbn Type
(cloth : alk. paper)
Lccn
2011024765
Other physical details
ill.
System control number
(OCoLC)730906535
Label
Plant physics, Karl J. Niklas and Hanns-Christof Spatz
Publication
Bibliography note
Includes bibliographical references and indexes
Contents
ch. 1 An Introduction to Some Basic Concepts -- 1.1.What is plant physics? -- 1.2.The importance of plants -- Box 1.1 The amount of organic carbon produced annually -- 1.3.A brief history of plant life -- 1.4.A brief review of vascular plant ontogeny -- 1.5.Plant reproduction -- 1.6.Compromise and adaptive evolution -- Box 1.2 Photosynthetic efficiency versus mechanical stability -- 1.7.Elucidating function from form -- 1.8.The basic plant body plans -- 1.9.The importance of multicellularity -- ch. 2 Environmental Biophysics -- 2.1.Three transport laws -- 2.2.Boundary layers -- 2.3.Living in water versus air -- Box 2.1 Passive diffusion of carbon dioxide in the boundary layer in air and in water -- 2.4.Light interception and photosynthesis -- Box 2.2 Absorption of light by chloroplasts -- Box 2.3 Formulas for the effective light absorption cross section of some geometric objects -- Box 2.4 Modeling light interception in canopies -- 2.5.Phototropism -- 2.6.Mechanoperception -- 2.7.Thigmomorphogenesis -- 2.8.Gravitropism -- 2.9.Root growth, root anchorage, and soil properties -- ch. 3 Plant Water Relations -- 3.1.The roles of water acquisition and conservation -- 3.2.Some physical properties of water -- 3.3.Vapor pressure and Raoult's law -- 3.4.Chemical potential and osmotic pressure -- 3.5.Water potential -- 3.6.Turgor pressure and the volumetric elastic modulus -- 3.7.Flow through tubes and the Hagen-Poiseuille equation -- 3.8.The cohesion-tension theory and the ascent of water -- 3.9.Phloem and phloem loading -- ch. 4 The Mechanical Behavior of Materials -- 4.1.Types of forces and their components -- 4.2.Strains -- 4.3.Different responses to applied forces -- 4.4.A note of caution about normal stresses and strains -- 4.5.Extension to three dimensions -- 4.6.Poisson's ratios -- Box 4.1 Poisson's ratio for an incompressible fluid -- Box 4.2 Poisson's ratio for a cell -- 4.7.Isotropic and anisotropic materials -- 4.8.Shear stresses and strains -- 4.9.Interrelation between normal stresses and shear stresses -- 4.10.Nonlinear elastic behavior -- 4.11.Viscoelastic materials -- 4.12.Plastic deformation -- 4.13.Strength -- 4.14.Fracture mechanics -- 4.15.Toughness, work of fracture, and fracture toughness -- 4.16.Composite materials and structures -- 4.17.The Cook-Gordon mechanism -- ch. 5 The Effects of Geometry, Shape, and Size -- 5.1.Geometry and shape are not the same things -- 5.2.Pure bending -- 5.3.The second moment of area -- 5.4.Simple bending -- Box 5.1 Bending of slender cantilevers -- Box 5.2 Three-point bending of slender beams -- 5.5.Bending and shearing -- Box 5.3 Bending and shearing of a cantilever -- Box 5.4 Bending and shearing of a simply supported beam -- Box 5.5 The influence of the microfibrillar angle on the stiffness of a cell -- 5.6.Fracture in bending -- 5.7.Torsion -- 5.8.Static loads -- Box 5.6 Comparison of forces on a tree trunk resulting from self-loading with those experienced in bending -- 5.9.The constant stress hypothesis -- Box 5.7 Predictions for the geometry of a tree trunk obeying the constant stress hypothesis -- 5.10.Euler buckling -- 5.11.Hollow stems and Brazier buckling -- 5.12.Dynamics, oscillation, and oscillation bending -- Box 5.8 Derivation of eigenfrequencies -- ch. 6 Fluid Mechanics -- 6.1.What are fluids? -- Box 6.1 The Navier-Stokes equations -- 6.2.The Reynolds number -- 6.3.Flow and drag at small Reynolds numbers -- Box 6.2 Derivation of the Hagen-Poiseuille equation -- 6.4.Flow of ideal fluids -- 6.5.Boundary layers and flow of real fluids -- Box 6.3 Vorticity -- 6.6.Turbulent flow -- Box 6.4 Turbulent stresses and friction velocities -- 6.7.Drag in real fluids -- 6.8.Drag and flexibility -- 6.9.Vertical velocity profiles -- 6.10.Terminal settling velocity -- 6.11.Fluid dispersal of reproductive structures -- ch. 7 Plant Electrophysiology -- 7.1.The principle of electroneutrality -- 7.2.The Nernst-Planck equation -- 7.3.Membrane potentials -- Box 7.1 The Goldman equation -- 7.4.Ion channels and ion pumps -- Box 7.2 The Ussing-Teorell equation -- 7.5.Electrical currents and gravisensitivity -- 7.6.Action potentials -- 7.7.Electrical signaling in plants -- ch. 8 A Synthesis: The Properties of Selected Plant Materials, Cells, and Tissues -- 8.1.The plant cuticle -- 8.2.A brief introduction to the primary cell wall -- Box 8.1 Cell wall stress and expansion resulting from turgor -- 8.3.The plasmalemma and cell wall deposition -- 8.4.The epidermis and the tissue tension hypothesis -- 8.5.Hydrostatic tissues -- Box 8.2 Stresses in thick-walled cylinders -- Box 8.3 Compression of spherical turgid cells -- 8.6.Nonhydrostatic cells and tissues -- 8.7.Cellular solids -- 8.8.Tissue stresses and growth stresses -- 8.9.Secondary growth and reaction wood -- 8.10.Wood as an engineering material -- ch. 9 Experimental Tools -- 9.1.Anatomical methods on a microscale -- 9.2.Mechanical measuring techniques on a macroscale -- Box 9.1 An example of applied biomechanics: Tree risk assessment -- 9.3.Mechanical measuring techniques on a microscale -- 9.4.Scholander pressure chamber -- 9.5.Pressure probe -- 9.6.Recording of electric potentials and electrical currents -- 9.7.Patch clamp techniques -- 9.8.Biomimetics -- ch. 10 Theoretical Tools -- 10.1.Modeling -- 10.2.Morphology: The problematic nature of structure-function relationships -- 10.3.Theoretical morphology, optimization, and adaptation -- 10.4.Size, proportion, and allometry -- Box 10.1 Comparison of regression parameters -- 10.5.Finite element methods (FEM) -- 10.6.Optimization techniques -- Box 10.2 Optimal allocation of biological resources -- Box 10.3 Lagrange multipliers and Murray's law
Control code
730906535
Dimensions
24 cm
Extent
xx, 426 p.
Isbn
9780226586328
Isbn Type
(cloth : alk. paper)
Lccn
2011024765
Other physical details
ill.
System control number
(OCoLC)730906535

Library Locations

    • Copley LibraryBorrow it
      5998 Alcalá Park, San Diego, CA, 92110-2492, US
      32.771354 -117.193327
Processing Feedback ...