#
Riemannian manifolds
Resource Information
The concept ** Riemannian manifolds** represents the subject, aboutness, idea or notion of resources found in **University of San Diego Libraries**.

The Resource
Riemannian manifolds
Resource Information

The concept

**Riemannian manifolds**represents the subject, aboutness, idea or notion of resources found in**University of San Diego Libraries**.- Label
- Riemannian manifolds

## Context

Context of Riemannian manifolds#### Subject of

No resources found

No enriched resources found

- An introduction to differentiable manifolds and Riemannian geometry
- Analysis for diffusion processes on Riemannian manifolds
- Behavior of distant maximal geodesics in finitely connected complete 2-dimensional Riemannian manifolds
- Bieberbach groups and flat manifolds
- Coarse cohomology and index theory on complete Riemannian manifolds
- Computers, rigidity, and moduli : the large-scale fractal geometry of Riemannian moduli space
- Curvature : a variational approach
- Degree theory of immersed hypersurfaces
- Differentiable manifolds : forms, currents, harmonic forms
- Differential systems and isometric embeddings
- Existence and regularity of minimal surfaces on Riemannian manifolds
- Foliations on Riemannian manifolds
- Fredholm operators and Einstein metrics on conformally compact manifolds
- Hardy spaces and potential theory on C[superscript 1] domains in Riemannian manifolds
- Harmonic maps, conservation laws, and moving frames
- Homogeneous manifolds with negative curvature, Part II
- Introduction to algebraic curves
- Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds
- Metrics of positive scalar curvature and generalised Morse functions, Part I
- Minimal submanifolds in pseudo-Riemannian geometry
- Minimal surfaces in Riemannian manifolds
- Naturally reductive metrics and Einstein metrics on compact Lie groups
- On the regularity of the composition of diffeomorphisms
- Riemannian foliations
- Second order analysis on (P2(M),W2)
- Strong rigidity of locally symmetric spaces
- Strong rigidity of locally symmetric spaces,
- The AB program in geometric analysis : sharp Sobolev inequalities and related problems
- The Hodge-Laplacian : boundary value problems on Riemannian manifolds
- The essential John Nash
- The geometry of curvature homogeneous pseudo-Riemannian manifolds
- The kinematic formula in Riemannian homogeneous spaces
- Two classes of Riemannian manifolds whose geodesic flows are integrable
- Vanishing and finiteness results in geometric analysis : a generalization of the Bochner technique
- Variétés différentiables : formes, courants, formes harmoniques

## Embed

### Settings

Select options that apply then copy and paste the RDF/HTML data fragment to include in your application

Embed this data in a secure (HTTPS) page:

Layout options:

Include data citation:

<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.sandiego.edu/resource/T3wnAoX_0HA/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.sandiego.edu/resource/T3wnAoX_0HA/">Riemannian manifolds</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.sandiego.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.sandiego.edu/">University of San Diego Libraries</a></span></span></span></span></div>

Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements

### Preview

## Cite Data - Experimental

### Data Citation of the Concept Riemannian manifolds

Copy and paste the following RDF/HTML data fragment to cite this resource

`<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.sandiego.edu/resource/T3wnAoX_0HA/" typeof="CategoryCode http://bibfra.me/vocab/lite/Concept"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.sandiego.edu/resource/T3wnAoX_0HA/">Riemannian manifolds</a></span> - <span property="potentialAction" typeOf="OrganizeAction"><span property="agent" typeof="LibrarySystem http://library.link/vocab/LibrarySystem" resource="http://link.sandiego.edu/"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.sandiego.edu/">University of San Diego Libraries</a></span></span></span></span></div>`